A List of Reference Materials Pertaining to Lunar Polar Volatiles
- External Groups: Presentations, Findings, and White Papers
- Lunar Polar Environment
- LCROSS Experiment
- Lunar Water Ice – Historical Perspective
- Neutron Spectroscopy Measurements
- Lunar Radar Measurements
- LAMP Measurements
- LOLA Albedo Measurements
- Surficial Water at the Moon
- Lunar Polar Landing Site Analyses
- NASA Resource Prospector
- Lunar Polar Volatiles Computer Models
- Lunar Polar Volatiles Instrument and Laboratory Studies
- Space Architecture Concepts Involving Lunar Polar Volatiles
External Groups: Presentations, Findings, and White Papers
Lunar Exploration Analysis Group (LEAG) Annual Meeting Presentations and Findings
http://www.lpi.usra.edu/leag/meetings.shtml
Friends of Lunar Volatiles (FoLV) White Paper, ‘Lunar Polar Volatiles: Assessment of Existing Observations for Exploration
http://sservi.nasa.gov/wp-content/uploads/2016/02/Volatiles_White_Paper.pdf
NASA Solar System Exploration Research Virtual Institute (SSERVI) Polar Regolith Workshop Without Walls
http://sservi.nasa.gov/polar-regolith-workshop/
NASA Solar System Exploration Research Virtual Institute (SSERVI) 2013 Exploration Science Forum
http://sservi.nasa.gov/nesf2014/lsf13.html
NASA Solar System Exploration Research Virtual Institute (SSERVI) 2014 Exploration Science Forum
http://nesf2014.arc.nasa.gov/index
NASA Solar System Exploration Research Virtual Institute (SSERVI) 2015 Exploration Science Forum
http://nesf2015.arc.nasa.gov/agenda
Lunar Polar Environment
Bussey et al. (1999) Illumination conditions at the lunar south pole. Geophys Res Lett 26:1187-1190.
http://onlinelibrary.wiley.com/doi/10.1029/1999GL900213/full
Farrell et al. (2010) Anticipated electrical environment within permanently shadowed craters. J Geophys Res 115, E03004, doi:10.1029/2009JE003464.
http://onlinelibrary.wiley.com/wol1/doi/10.1029/2009JE003464/full
Heiken et al. (1991) Lunar Sourcebook: A user’s guide to the Moon. Cambridge University Press.
http://www.lpi.usra.edu/publications/books/lunar_sourcebook/
Mazarico et al. (2011) Illumination conditions of the lunar polar regions using LOLA topography. Icarus 211:1066-1081.
http://www.sciencedirect.com/science/article/pii/S0019103510004203
Paige et al. (2010) Diviner lunar radiometer observations of cold traps in the moon’s south polar region. Science 330:479-482.
http://www.sciencemag.org/content/330/6003/479.abstract
Siegler et al. (2011) Effects of orbital evolution on lunar ice stability. J Geophys Res 116:E03010, doi:10.1029/2010JE003652.
http://onlinelibrary.wiley.com/doi/10.1029/2010JE003652/full
Siegler et al. (2016) Lunar true polar wander inferred from polar hydrogen. Nature 531: 480-501.
http://www.nature.com/nature/journal/v531/n7595/abs/nature17166.html
Speyerer et al. (2013) Persistently illuminated regions at the lunar poles: Ideal sites for future exploration. Icarus 222:122-136.
http://www.sciencedirect.com/science/article/pii/S0019103512004174
Takahashi et al. (2014) Reorientation of the early lunar pole. Nat Geo 7:409-412.
http://www.nature.com/ngeo/journal/v7/n6/full/ngeo2150.html
Zimmerman et al. (2011) Solar wind access to lunar polar craters: Feedback between surface charging and plasma expansion. Geophys. Res. Lett., 38, L19202, doi:10.1029/2011GL048880.
http://onlinelibrary.wiley.com/wol1/doi/10.1029/2011GL048880/full
Lunar Crater Observation and Sensing Satellite (LCROSS) Experiment
Colaprete et al. (2010) Detection of water in the LCROSS ejecta plume. Science 330:463-467.
http://www.sciencemag.org/content/330/6003/463.abstract
Schultz et al. (2010) The LCROSS cratering experiment. Science 330:468-472.
http://www.sciencemag.org/content/330/6003/468.abstract
Lunar Water Ice – Historical Perspective
Arnold (1979) Ice in the lunar polar regions. J Geophys Res 84:5659-5668.
http://onlinelibrary.wiley.com/wol1/doi/10.1029/JB084iB10p05659/abstract
Watson et al. (1961) On the possible presence of ice on the moon. J Geophys Res 66:1598-1600.
http://onlinelibrary.wiley.com/doi/10.1029/JZ066i005p01598/abstract
Watson et al. (1961) The behavior of volatiles on the lunar surface. J Geophys Res 66:3033-3045.
http://onlinelibrary.wiley.com/wol1/doi/10.1029/JZ066i009p03033/abstract
Neutron Spectroscopy Measurements
Feldman et al. (2001) Evidence for water ice near the lunar poles. J Geophys Res 106:23231-23525.
http://onlinelibrary.wiley.com/doi/10.1029/2000JE001444/full
Lawrence et al. (2006) Improved modeling of Lunar Prospector Neutron Spectrometer data: Implications for hydrogen deposits at the lunar poles. J Geophys Res 111:E08001, doi:10.1029/2005JE002637.
http://onlinelibrary.wiley.com/doi/10.1029/2005JE002637/full
Lawrence et al. (2015) High-resolution mapping of lunar polar hydrogen with a low-resource orbital mission. Acta Astronautica 115:452-462.
http://www.sciencedirect.com/science/article/pii/S0094576515002556
Litvak et al. (2011) Global maps of lunar neutron fluxes from the LEND instrument. J Geophys Res 117:E00H22, doi:10.1029/2011JE003949.
http://onlinelibrary.wiley.com/doi/10.1029/2011JE003949/full
McClanahan et al. (2015) Evidence for the sequestration of hydrogen-bearing volatiles towards the Moon’s southern pole-facing slopes. Icarus 255:88-99.
http://www.sciencedirect.com/science/article/pii/S0019103514005296
Miller et al. (2012) Enhanced hydrogen at the lunar poles:New insights from the detection of epithermal and fast neutron signatures. J Geophys Res 117, E11007, doi:10.1029/2012JE004112.
http://onlinelibrary.wiley.com/wol1/doi/10.1029/2012JE004112/full
Miller et al. (2014) Identification of surface hydrogen enhancements within the Moon’s Shackleton crater. Icarus 233:229-232.
https://www.sciencedirect.com/science/article/pii/S0019103514000840
Mitrofanov et al. (2010) Hydrogen mapping of the lunar south pole using LRO neutron detector experiment LEND. Science 330:483-486.
http://www.sciencemag.org/content/330/6003/483.abstract
Sanin et al. (2017) Hydrogen distribution in the lunar polar regions. Icarus 283:20-30.
http://www.sciencedirect.com/science/article/pii/S0019103516302639
Lunar Radar Measurements
Campbell et al. (2006) No evidence for thick deposits of ice at the lunar south pole. Nature 443:835-837.
http://www.nature.com/nature/journal/v443/n7113/full/nature05167.html
Nozette et al. (2001) Integration of lunar polar remote-sensing data sets: Evidence for ice at the lunar south pole. J Geophys Res 106:23253-23266.
http://onlinelibrary.wiley.com/doi/10.1029/2000JE001417/abstract
Patterson et al. (2016) Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo Observatory. Icarus doi: 10.1016/j.icarus.2016.05.017.
http://www.sciencedirect.com/science/article/pii/S0019103516301750
Spudis et al. (2013) Evidence for water ice on the moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar. J Geophys Res 118:1-14.
http://onlinelibrary.wiley.com/doi/10.1002/jgre.20156/full
Thomson et al. (2012) An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar. Geophys Res Lett 39:L14201, doi:10.1029/2012GL052119.
http://onlinelibrary.wiley.com/doi/10.1029/2012GL052119/full
Lyman Alpha Mapping Project (LAMP) Measurements
Gladstone et al. (2012) Far-ultraviolet reflectance properties of the Moon’s permanently shadowed regions. J Geophys Res 117:E00H04, doi:10.1029/2011JE003913.
http://onlinelibrary.wiley.com/doi/10.1029/2011JE003913/full
Hayne et al. (2015) Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus 255:58-69.
http://www.sciencedirect.com/science/article/pii/S0019103515001335
Hendrix et al. (2012) The lunar far-UV albedo: Indicator of hydration and weathering. J. Geophys. Res., 117, E12001, doi:10.1029/2012JE004252.
http://onlinelibrary.wiley.com/doi/10.1029/2012JE004252/full
Lunar Orbiter Laser Altimeter (LOLA) Albedo Measurements
Fisher et al. (2017) Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment. Icarus 292:74-85.
http://www.sciencedirect.com/science/article/pii/S0019103516307795
Lucey et al. (2014) The global albedo of the Moon at 1064 nm from LOLA. J Geophys Res 119:1665-1679.
http://onlinelibrary.wiley.com/doi/10.1002/2013JE004592/full
Surficial Water at the Moon (as a possible source of lunar polar volatile deposits)
Banfield et al. (2018) Widespread distribution of OH/H2O on the lunar surface inferred from spectral data. Nature Geoscience 11:173-177.
https://www.nature.com/articles/s41561-018-0065-0
Clark RN (2009) Detection of absorbed water and hydroxl on the moon. Science 326:562-564.
http://www.sciencemag.org/content/326/5952/562.abstract
Farrell et al. (2015) Solar wind implantation into lunar regolith: Hydrogen retention in a surface with defects. Icarus 255:116-126.
https://www.sciencedirect.com/science/article/pii/S001910351400476X
Needham et al. (2017) Lunar volcanism produced a transient atmosphere around the ancient Moon. Earth and Planetary Sci Let 473:175-178.
https://www.sciencedirect.com/science/article/pii/S0012821X17304971
Pieters et al. (2009) Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on Chandrayaan-1. Science 326:568-572.
http://www.sciencemag.org/content/326/5952/568.abstract
Sridharan et al. (2010) ‘Direct’ evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan 1. Planet Space Sci 58:947-950.
http://www.sciencedirect.com/science/article/pii/S0032063310000693
Sunshine et al. (2009) Temporal and spatial variability of lunar hydration as observed by the Deep Impact Spacecraft. Science 326:565-568.
http://www.sciencemag.org/content/326/5952/565.abstract
Lunar Polar Landing Site Analyses
De Rosa et al. (2012) Characterisation of potential landing sites for the European Space Agency’s lunar lander project. Planet Space Sci 74:224-246.
http://www.sciencedirect.com/science/article/pii/S0032063312002395
Heldmann et al. (2016) Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth crater. Acta Astronautica 127:308-320.
http://www.sciencedirect.com/science/article/pii/S0094576515301934
Hiesinger et al. (2014) Geology of the Lunar Glob landing sites in Boguslawsky crater, moon. Lunar Planet Sci Conf, abstract 2370.
http://www.hou.usra.edu/meetings/lpsc2014/pdf/2370.pdf
Lunar Exploration Analysis Group (2014) Volatiles specific action team final report.
http://www.lpi.usra.edu/leag/reports/vsat_report_123114x.pdf
Lemelin et al. (2014) High-priority lunar landing sites for in situ and sample return studies of polar volatiles Planet Space Sci 101:149-161.
http://www.sciencedirect.com/science/article/pii/S0032063314001986
Nishiyama et al. (2015) Selection of landing sites for future lunar missions with multi-objective optimization. Lunar Planet Sci Conf, abstract 1368.
http://www.hou.usra.edu/meetings/lpsc2015/pdf/1368.pdf
Speyerer et al. (2016) Optimized traverse planning for future polar prospectors based on lunar topography. Icarus 273:337-345.
http://www.sciencedirect.com/science/article/pii/S0019103516001524
NASA Resource Prospector
NOTE: A number of presentations on the Resource Prospector mission can be found at the Lunar Exploration Analysis Group (LEAG) and NASA Solar System Exploration Research Virtual Institute (SSERVI) external groups links.
Andrews et al. (2014) Introducing the Resource Prospector (RP) mission. AIAA SPACE 2014-4378, San Diego, CA.
http://arc.aiaa.org/doi/pdf/10.2514/6.2014-4378
Heldmann et al. (2012) Feasibility and definition of a lunar polar volatiles prospecting mission. Global Space Exploration Conference, Washington DC.
http://www.ri.cmu.edu/pub_files/2012/5/101-glex2012.pdf
Heldmann et al. (2015) Real-time science operations to support a luunar polar rover mission. Adv Space Res 55:2427-2437.
http://www.sciencedirect.com/science/article/pii/S0273117714004931
Lunar Polar Volatiles Computer Models
Berezhnoy et al. (2012) Origin and stability of lunar polar volatiles. Adv Space Res 50:1638-1646.
http://www.sciencedirect.com/science/article/pii/S0273117712001998
Elphic et al. (2007) Models of the distribution and abundance of hydrogen at the lunar south pole. Geophys Res Lett 34:L13204, doi:10.1029/2007GL029954.
http://onlinelibrary.wiley.com/doi/10.1029/2007GL029954/full
Farrell et al. (2015) Spillage of lunar crater volatiles onto adjacent terrains: The case for dynamic processes. Geophys Res Lett 42:3160-3165.
http://onlinelibrary.wiley.com/doi/10.1002/2015GL063200/full
Hurley et al. (2012) Two-dimensional distribution of volatiles in teh lunar regolith from space weathering simulations. Geophys Res Lett 39: doi:10.1029/2012GL051105.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012GL051105
Moores (2016) Lunar water migration in the interval between large impacts: Heterogeneous delivery to permanently shadowed regions, fractionation, and diffusive barriers. J Geophys Res Planets 121:46-60.
http://onlinelibrary.wiley.com/doi/10.1002/2015JE004929/full
Rubanenko et al. (2017) Stability of ice on the Moon with rough topography. Icarus 296:99-109.
https://www.sciencedirect.com/science/article/pii/S001910351630656X
Schorghofer et al. (2007) Subsurface migration of H2O at lunar cold traps. J Geophys Res Planets 112, E02010, doi:10.1029/2006JE002779.
http://onlinelibrary.wiley.com/doi/10.1029/2006JE002779/full
Teodoro et al. (2010) Spatial distribution of lunar polar hydrogen deposits after KAGUYA (SELENE). Geophys Res Lett 37:L12201, doi:10.1029/2010GL042889.
http://onlinelibrary.wiley.com/doi/10.1029/2010GL042889/full
Zimmerman et al. (2013) Recursive plasma wake formation on the Moon and its effect on polar volatiles. Icarus 226:992-998.
http://www.sciencedirect.com/science/article/pii/S0019103513002698
Lunar Polar Volatiles Instrument and Laboratory Studies
Carpenter et al. (2014) Accessing and assessing lunar resources with PROSPECT. LEAG Annual Meeting presentation.
http://www.hou.usra.edu/meetings/leag2014/presentations/carpenter_PROSPECT.pdf
Elphic et al. (2008) Surface and downhole prospecting tools for planetary exploration: Tests of neutron and gamma ray probes. Astrobiology 8:639-652.
http://online.liebertpub.com/doi/abs/10.1089/ast.2007.0163
Elphic et al. (2015) Simulated real-time lunar volatiles prospecting with a rover-borne neutron spectrometer. Adv Space Res 55:2438-2450.
http://www.sciencedirect.com/science/article/pii/S0273117715000873
Gertsch et al. (2008) Review of lunar regolith properties for design of low power lunar excavators. Sixth International Conference on Case Histories in Geotechnical Engineering.
http://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=2932&context=icchge
Hayne et al. (2014) New approaches to lunar ice detection and mapping. Keck Institute for Space Studies.
http://www.kiss.caltech.edu/study/lunar-ice/KISS_lunar_report.pdf
Lanzerotti et al. (1981) Ice in the polar regions of the Moon. J Geophys Res 86:3949-3950.
http://onlinelibrary.wiley.com/wol1/doi/10.1029/JB086iB05p03949/abstract
Lasue et al. (2012) Remote laser-induced breakdown spectroscopy (LIBS) for lunar exploration. J Geophys Res 117:E01002, doi:10.1029/2011JE003898, 2012.
http://onlinelibrary.wiley.com/doi/10.1029/2011JE003898/full
Pitcher et al. (2016) Investigation of the properties of icy lunar polar regolith simluants. Adv Space Res 57:1197-1208
http://www.sciencedirect.com/science/article/pii/S0273117715009035
Reiss et al. (2016) Implications of sample size for the thermal extraction of volatiles from lunar regolith with the PROSPECT instrument package. J Aerosp Eng
http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000688
Space Architecture Concepts Involving Lunar Polar Volatiles
Blair et al. (2002) Space resource economic analysis toolkit: The case for commercial lunar ice mining. Final Report submitted to NASA Exploration Team (NExT).
http://www.nss.org/settlement/moon/library/2002-CaseForCommercialLunarIceMining.pdf
Burke (1985) Merits of a lunar polar base location. Lunar Bases and Space Activities of the 21st century. Lunar and Planetary Institute. pp 77-84.
http://articles.adsabs.harvard.edu//full/1985lbsa.conf…77B/0000077.000.html
Carpenter et al. (2016) Establishing lunar resource viability. Space Policy 37:52-57.
http://www.sciencedirect.com/science/article/pii/S0265964616300315
Ishimatsu et al. (2013) A generalized multi-commodity network flow model for space exploration logistics. AIAA SPACE 2013 Conference and Exposition, AIAA-2013-5414.
http://arc.aiaa.org/doi/abs/10.2514/6.2013-5414
Lavoie et al. (2016) The purpose of human spaceflight and a lunar architecture to explore the potential of resource utilization. AIAA SPACE 2016 Conference and Exposition, AIAA-2016-5526.
http://arc.aiaa.org/doi/pdf/10.2514/6.2016-5526
Metzger (2016) Space development and space science together, an historic opportunity. Space Policy 37:77-91.
http://www.sciencedirect.com/science/article/pii/S0265964616300625
Miller et al (2015) Economic assessment and systems analysis of an evolvable lunar architecture that leverages commercial space capabilities and public-private partnerships. NexGen Space LLC study.
http://www.nss.org/docs/EvolvableLunarArchitecture.pdf
Sowers (2016) A cislunar transportation system fueled by lunar resources. Space Policy 37:103-109.
http://www.sciencedirect.com/science/article/pii/S0265964616300352
Spudis et al. (2011) Using the resources of the Moon to create a permanent, cislunar space faring system. AIAA SPACE 2011 Conference & Exposition, AIAA-2011-7185.
http://www.spudislunarresources.com/Bibliography/p/102.pdf
THIS SITE IS FOR HISTORICAL PURPOSES ONLY AND IS NO LONGER UPDATED AS OF MARCH 2021