Selection of Landing Sites for Future Lunar Missions with Multi-Objective Optimization

M. Nishiyama¹, H. Otake², T. Hoshino², T. Hashimoto², T. Watanabe², T. Tatsukawa², A. Oyama² University of Tokyo¹, Japan Aerospace Exploration Agency (JAXA)²

1. Introduction

Conflicting Objectives for Landing Sites

Technical requirement: Minimize continuous night length

Night
Can't generate
electricity all the time
Run out of power

Continuous nights

Daytime and night alternate

Daytime Night Daytime Night

Can generate electricity

Hun out of power during daytime

→ Long daytime & short continuous night site is good

Con

Mission requirement: Minimize the distance between landing site and ice

Less ice exists at illuminated sites

■Requirements for landing sites

- · Minimize continuous night length
- Maximize communicable time between moon and the Earth
- Minimize slope angles
- Minimize the distance between the landing site and ice etc.

Use Multi-Objective Optimization to select sites

that satisfy all the requirements

What is Multi-Objective Optimization?

□Advantages of Multi-Objective Optimization Bad ♣

- No need weighting factors

 Each objective value is
 evaluated separately
- Find several optimal solutions at once
- We can choose any favorable optimal solution

☐ How to select multi-objective optimal solutions

Pareto ranking

 Each solution's rank is defined as r(X_i) = 1+n_i

(i : the order of the solution, n_i: The number of solutions that are superior to X_i)

- No need to compare between objective values that have different units
- Rank 1 solutions form a Pareto frontier
 - → Multi-objective optimal solutions exist on the Pareto frontier

2. Method

Create Moon Database

□Calculate moon data by moon simulator

- The amount of sunshine
- Communicability
- Slope angles
 Simulation result pictures (Sunshine)

Day 2

Moon database at one point on the moon (10-m resolution)

Day	1	2	3	4	5	6
Sunshine	1	1	0	0	0	1
Comm	1	0	0	0	1	1
Angle	10.5					

Check Constraints

□Constraint 1 : Slope angles < 15.0 degrees

□Constraint 2 : Continuous night length < 14 days

If the site doesn't meet the constraints, remove from search targets
All sites: Over 900 millions

Under constraint: Around 170 thousands

→ Speed-up full search

300km

Yellow dots : Feasible solutions

Red cross : South pole of moon

Calculate Objective Functions

■Minimum objective value is the best

- Continuous night length
 (Max night length) / (Constraint night length)
- Communicable day length
 1.0 (Illuminative & Communicable day) / 365
- Slope angles (Slope angles) / (Constraint slope angles)Ice distribution
- (3D distance from ice) x (depth of ice)

Make reference to the map that shows estimated ice distribution the moon

Paige et al., 2010

3. Result & Conclusion

Multi-Objective optimal solutions

17413 sites

Divided landing sites by objective functions

A : At the South Pole

B : Around the South Pole (Within 20 km)

C: Top of the mountains & Facing the Earth

Sunshine	Communication	Slope	Ice distribution	Landing sites
0	0	0	0	0
0	0	×	0	A (6 sites)
0	×	0	0	B (745 sites)
×	0	0	0	C(4037 sites)

Conclusion

- Search landing sites that satisfy conflicting objectives by multi-objective optimization
- Classify multi-objective optimal landing sites by objectives
 - → Analyze missions suitable for each site

At the South Pole: Extremely narrow, but desirable sites for lunar exploration

Around the South Pole (Within 20 km): Suitable for missions using high autonomy rovers

Top of mountains & Facing the Earth: Suitable for explorers that communicate with the Earth and are controlled by human frequently