ROI for lunar volatile investigations

An appendix to the 'European response' to the recent Lunar Exploration and Analysis Group (LEAG) Volatiles Special Action Team (VSAT) report on lunar volatiles – A report of advisory team under the umbrella of the ESA's Topical Team on Exploitation of Local Planetary Materials (TT-ELPM)

South Pole

Hydrogen content (SP)

Hydrogen content (SP)

Diviner avg. Temperature (SP)

(min. and max. temperature are also available)

Diviner avg. T:
Below 110K
Above 110K

Slope (SP, 20 m scale)

Slope: Below 10 deg Above 10 deg

Illumination (SP)

Earth visibility (SP)

Between 80° and 90° latitude:

- 3 areas with H > 150 ppm (same ROIs as in the LEAG report)
- 1 of these areas has avg. T > 110 K.
- Removing direct Earth communication/illumination constraints doesn't increase number of potential ROI.
- Reducing H to > 125 ppm increases number of potential ROI

ROI with H>150, slope<10 and avg. T<110

ROI with 150>H>125, slope<10 and avg. T<110

Black areas= Temperature and/or slope too high

ROI with H>150, slope<10 and avg. T<110

ROI with 150>H>125, slope<10 and avg. T<110

WAC mosaic

Potential Additional step:

Looking for potential sites that are close to (but not necessarily meeting) the LEAG threshold values but could be of higher scientific interest because of potential additional science.

North Pole

Hydrogen content (NP)

H contours:

150 ppm

125 ppm

100 ppm

Hydrogen content (NP)

Diviner avg. Temperature (NP)

(min and max Temperature are also available)

Diviner avg. T:
Below 110K
Above 110K

Slope (NP, LOLA DEM)

Slope: Below 10 deg. Above 10 deg.

H contours:

150 ppm

125 ppm

100 ppm

Illumination (NP)

H contours:

150 ppm

125 ppm

100 ppm

PSR

Earth visibility (NP)

H contours:

150 ppm125 ppm100 ppm

PSR

Black areas= Temperature and/or slope too high

Between 80° and 90° latitude:

- 2 areas with H > 150 ppm
- In the LEAG report, 1 area was discarded and the other significantly reduced because of direct Earth communication/illumination constraints
- Lowering H to > 125 ppm or discarding the direct Earth communication criteria significantly increases the number of potential ROI
- High H abundance areas extents below 80° in latitude

ROI with H>150, slope<10 and avg. T<110

ROI with 150>H>125, slope<10 and avg. T<110

H contours: 150 ppm 125ppm 100 ppm

PSR

Black areas= Temperature and/or slope too high

(illumination and Earth visibility are not accounted for)

ROI with H>150, slope<10 and avg. T<110

ROI with 150>H>125, slope<10 and avg. T<110

(illumination and Earth visibility are not accounted for)

WAC mosaic

Additional step:

Looking for potential sites that are close to (but not necessarily meeting) the LEAG threshold values but could be of higher scientific interest because of potential additional science. For example:

- the H-rich pockets below 80 deg. latitude
- The H-rich, young (Erastosthenian, Upper Imbrian) features close to the pole (e.g., Rozhdestvenskiy K crater, Plaskett crater, whose N wall is associated with a SELENE pure anorthosite detection).

Credits – Data sources

- Hydrogen content (Lunar Prospector, PDS)
- Bolometric Temperature, avg., min., max. (personal communication with the Diviner team, courtesy of Pierre Williams)
- PSR (LOLA, MIT)
- Slope (LOLA + polar LROC DTM, PDS + ArcGIS)
- Illumination (LOLA, MIT). Various alternative maps are available (LAMP, WAC... cf. Bussey et al., Nova et al., ...)
- Earth visibility (LOLA, MIT)

Source for LOLA/MIT data:

http://imbrium.mit.edu/EXTRAS/ILLUMINATION/

Source for 20m slope maps:

LPI interns Concept 4 team /CLSE Global Lunar Landing Site Study, http://www.lpi.usra.edu/exploration/CLSE-landing-site-study/

GIS assembled by Jessica Flahaut, contact: jessica.flahaut@ens-lyon.org