Regions of interest identified by the Lunar Exploration Analysis Group (LEAG) Volatiles Specific Action Team (VSAT) based on the Final Report 12/31/14 http://www.lpi.usra.edu/leag/reports/vsat report 123114x.pdf #### presented to the International Space Exploration Coordination Group (ISECG) Lunar Polar Volatiles Virtual Workshops Where to Explore, and How January 20th, 2016 Myriam Lemelin, on behalf of the LEAG VSAT team ### Motivation and Execution - Upon NASA's Human Exploration and Operations Mission Directorate (HEOMD) request, the Lunar Exploration Analysis Group (LEAG) established the Lunar Polar Volatiles Specific Action Team (VSAT) to: - select and prioritize regions of interest with the potential of accessible volatiles that may support a synergistic approach of multiple missions - Two approaches were used to reveal widespread regions of interest: - 1. Multi-parameter analysis optimized a number of volatile relevant and environmental parameters: hydrogen abundance, temperature, slope, proximity to permanently shaded regions (PSRs) and Earth visibility - 2. Similarity to LCROSS site based on hydrogen abundance and average annual temperature - These were supplemented by examining - Proximity to permanently shaded regions (PSRs) - Direct to Earth visibility - Illumination based on total lighting over a lunar diurnal cycle # Multi-parameter analysis | | Dataset | Resolution | Treshold | Reason | |------------|--|------------------------|----------|--| | Criteria | Hydrogen abundances (Lunar Prospector) | 0.5 ppd
(15 km/pix) | >150 ppm | Contains volatiles | | | Average annual temperature (DIVINER) | 240 m/pix | < 110 K | Preserves subsurface ice for geologic time | | | Slope
(LOLA) | 20 m/pix | < 10° | Navigable by current rovers | | | PSRs
(LOLA) | 240 m/pix | outside | Lighting available | | Complement | Proximity to PSRs | - | < 1 km | Allow small rover access | | | Direct to Earth visibility | 500 m/pix | - | Line of sight communication | | | Illumination | 500 m/pix | - | | ## Multi-parameter analysis **ROI 1: Cabeus vicinity** **ROI 2: Shoemaker/Nobile vicinities** ROI 3: Peary vicinity Substantial area of farside also meet general criteria # Multi-parameter analysis: adding more constraints Illumination is generally low Restricted regions have ~50% available lighting # Multi-parameter analysis: adding more constraints ## Similarity to LCROSS site #### **Criterion** • Regions similar to LCROSS Cabeus site in terms of hydrogen and average annual temperature "Likeness" = $\sqrt{(H - H_{Cabeus})^2 + (T - T_{Cabeus})^2}$ ## Similarity to LCROSS site North Pole Plaskett Haskin Hevesy Rozhdestvenskiy Plaskett V Lovelace Rozh. W Nansen Hermite Sylvester Peary Florey Mouchez M Mouchez A Main -like **ROI 1: Cabeus vicinity** **ROI 2: Shoemaker/Nobile vicinities** **ROI 3: Peary vicinity North rim of Hermite vicinities and farside also** ## Summary At both poles there are regions that are generally suitable for a common landing: **ROI 1: Cabeus vicinity (South Pole)** **ROI 2: Shoemaker/Nobile vicinities (South Pole)** **ROI 3: Peary vicinity (North Pole)** #### These are: - Volatile rich (H > 150 ppm) - Can maintain subsurface ice (average annual temp < 110K) - Modest slopes (< 10 °) - Adjacent to locations similar to the LCROSS impact site in terms of hydrogen and temperature - Availability of PSR < 1 km from lit areas When including Earth visibility and lighting, the north polar Peary vicinity is slightly favored owing to somewhat more persistent lighting, with the Cabeus vicinity showing the least persistent lighting. #### Data source: Average annual Temperature: Diviner, 240m/pix Paige personal comm. Hydrogen: Lunar Prospector, 0.5deg/pix http://pds-geosciences.wustl.edu/missions/lunarp/reduced_special.html Slope: derived from LOLA DEM, 20m/pix from http://imbrium.mit.edu/BROWSE/LOLA GDR/North pole.html http://imbrium.mit.edu/BROWSE/LOLA_GDR/South_pole.html Illumination conditions: model, 500m/pix Cahill and McGovern personal comm.