

Neutron Spectroscopy: A Prospecting Tool on the Moon

R. C. Elphic, A. Colaprete, E. Fritzler

NASA Ames Research Center/Moffett Field, CA

Prospecting for Lunar Polar Volatiles

Volumetric Hydrogen

Surface Frost?

Hayne et al., Icarus, 2015

South Pole Orbital Neutron Datasets

LEND SETN (<u>uncollimated</u>) 60-km FWHM Gaussian Smooth

-80 -75

LPNS Epithermals < 35km alt. 60-km FWHM Gaussian Smooth

- Some similarity color table magic
 - Litvak et al. JGR, 2012

LEND CSETN ('collimated') Total counts/sec

LPNS Adaptive Smooth (SNR>100)

- Some similarity but half of color table range is red
 - CSETN lower signal strength at Cabeus
 - Boynton et al., JGR, 2012

Neutron Genesis & Transport

Where do the lunar neutrons come from?

- Incoming galactic cosmic rays (~1 GeV) shatter nuclei
- Neutrons are the longest-lived fragments (15 min lifetime)
- Initial n energies > 100 MeV
- Scattering/moderation reduces energy
- Neutrons leak to space, or are captured by nuclei
- Leaked neutrons tell us about nearsubsurface composition

Near-IR and Neutron Spectrometers Work in Tandem on *Resource Prospector*

Epithermal neutron fluxes indicate presence of buried hydrogenous materials

Neutron Flux vs. Water Abundance

Terrestrial Testing Using a Neutron Source

What do we do on Earth? No galactic cosmic rays...

- Must use a radionuclide neutron source (we use Californium-252)
- Neutrons from the source have ~2-3
 MeV energy (so-called fast neutrons)
- Scattering/moderation reduces energy
- Some neutrons leak back out to be detected. Most do not.
- Leaked neutrons tell us about surface/subsurface – but only up to ~30 cm.

Mojave Volatiiles Project Used Two Resource Prospector Payload Instruments

- NIRVSS: Near-IR Volatile Spectrometer System
- 1600 3400 nm band
- Covers major H₂O, OH and other mineral features

- NSS: Neutron Spectrometer System
- Thermal and epithermal neutron flux
- Volumetric hydrogen abundance

Thermal Neutron Albedo: Hydration Variations in the Mojave Volatiles Project

Resource Prospector NSS Design

Sensor Module Subsystem Overview

- Detectors (2 ³He gas proportional counter tubes GE/Reuter Stokes custom design)
- High voltage power supply (~1600V)
- Front end electronics (charge-sensitive pre-amplifiers)
- 1 electronics board, enclosure, tube holders, tubes
- Located on fixture forward end of payload

- Enclosure is a 3-chamber shielded design for noise isolation
- Two low-noise front-end amplifiers strings (1 for each detector)
- High Voltage Power Supply
 - Low power
 - Commandable high voltage range 1.5-2.5kV
 - Low ripple and EMI noise
 - No cross-talk to preamp
 - Control loop stability
 - Voltage breakdown margin

Resource Prospector NSS Design

Data Processing Module Subsystem

- Communication with rover payload system
- Housekeeping and Data processing
- State machine (FPGA) controls system
- Low Voltage power supplies
- 1 electronic board and enclosure

Power

- -Vin: 23 ~ 34 V @ 1.5 W
- -Soft Start limiting In-rush current to 0.5 A
- -Isolated DC/DC
- -Single point grounding to host chassis via cable harness

Communication – Command & telemetry

- -RS422 transceivers
- —9.6 Kbaud, UART protocol (Start-8bit-data-stop-no parity)
- -89 byte data packet, 2 byte commands
- -Data rate : one packet / second

FPGA Processing

- -Pulse height and total charge analysis
- -Scalars for valid neutron counts above threshold
- -Housekeeping, SOH, cmd processing
- —Controls DACs that set HV, disc. threshold.

NSS Environmental and Field Testing

Neutron Spectroscopy & Lunar Polar Volatiles

Prospecting:

- Passive neutron spectroscopy, using GCR-generated neutrons, senses bulk hydration down to ~1 m depth
- Can be sensitive to small abundances of hydrogen (statistics!)
- Two measurements permit simple 2-layer model of depth to icebearing material

Resource Prospector:

- Neutron spectrometer system (NSS) is a key prospecting tool for locating, and characterizing, hydrous materials in top ~1 m of lunar regolith
- Lightweight, robust, simple with high heritage from flight
- 1.6 kg, 1.5 W, 712 bits/sec telemetry over RS422.