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Polar vs. “Normal” Lunar Soil

Most lunar geologic processes are globally
Isotropic

To first-order, polar soil ought to be like
equatorial or mid-latitude soil

However, evidence exists for differences exist
at the poles, which we do not understand

We will review “normal” lunar soil first, then
look at differences



Regolith Formation

Impacts are the dominant geological process

Larger impacts (asteroids & comets)

— Fracture bedrock and throw out ejecta blankets
— Mix regolith laterally and in the vertical column
Micrometeorite gardening

— Wears down rocks into soil

— Makes the soil finer

— Creates glass and agglutinates

— Creates patina on the grains via vapor deposition
Lunar soil is completely unlike terrestrial soil
— No lunar soil simulant can meet every need
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Soil Particle Size Distribution
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Soil Maturity

* Soil formed by a recent s ——————————
iImpact is immature

— Coarser, less glass

* Average * Submature .
content, fewer .
M 01 L Content _
agglutinates, less 15.3%
. Average
nanophase iron 2 | rggitnate |

Source: Lunar Sourcebook
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Content 46 9%
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Source: W. David Carrier Ill, Gary R. Olhoeft, and Wendell Mendell, Lunar Source Book



Flowability of Lunar Soll

e

 Lunar soil does not flow
well

— Sharp, angular particles =
high friction

— Dust content = high
cohesion

— Low Gravity

e Lunar soil simulants often
flow too easily
— JSC-1A flows far too easily

— NU-LHT series much better
but very expensive




Cohesion

Average cohesion of 0.17 kN m2
adopted for surficial material.

Varies from 0.1 to 1.0 kN m-2

Cohesion of the orange and
adjacent gray soil.
AS17-137-20989
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Chart Credit: Jeff Plescia, “The Lunar Surface” in Moon 101 course



Shear Strength (MPa)
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Mohr-Coulomb Plot for Lunar Soil
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Friction & Cohesion
Depend upon Compaction
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Fig. 9.27. Measured shear
strengths of a basaltic
simulant of lunar soil,
showing the friction angle
(vertical axis) and cohesion
{horizontal axis) for different
relative densities (after Mifchell

etal, 1972d, 1974).

Source: W. David Carrier Ill, Gary R. Olhoeft, and Wendell Mendell, Lunar Source Book



Lunar Soil Very Compacted

* At the equatorial and
mid-latitude sites, lunar
soil was found to be
very compacted

e Surface was loose, easy
to make boot prints

* Deeper soil was
compacted, difficult to
penetrate




Soil Less Dense on Crater Rims

* The crew encountered less dense soil on the rims of large, young
impact craters
* This makes sense since overturned soil is deep on the rims and has had

less time to re-densify 777 Red
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Fig. 3.13. A small experimental crater in a layered cohesionless substrate. The original stratigraphy is
preserved as a thin inverted sequence in the ejecta deposit, Compare with figure 3.19 (after Stiffler,
D., Gault, D. E., Wedekind, ]J. and Polkowski, G., Jour. Geophys. Res., 80: 40624077, 1975,
copyrighted American Geophysical Union),

Lunar Stratigraphy and Sedimentology, J.F. Lindsay



Core Tube Samples
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Depth (cm)

Non-Monotonic Densities
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Lunations and Seasons

The lunation is 29.53 Earth days

The Moon’s axis is less tilted than the Earth’s:
only 1.5 deg (versus 23.44 deg)

“(Ant)arctic Circle” is thus at 88.5 deg N or S. For
a perfect sphere, inside that circle there would be
6 months of daylight followed by 6 months of
darkness

However, terrain dominates

— high points of terrain get more sunlight and bottoms
of craters get less

— Peaks of Eternal Light vs. Perennially Shadowed
Regions



lllumination Map — South Pole
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Credit: LROC Wide Angle Camera, NASA/GSFC/Arizona State University



Thermal Environment

Primary thermal drivers are hot sunlight (5777 K)
and cold background radiation in space (2.7K).

Not enough atmosphere to mediate temperature
SWings

Temperature is cyclic with the lunations
Equatorial temp range ~114 to 394K

Polar temp range (not in PSRs) ~210 to 230K

PSRs as low as 26K
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Subsurface Thermal Environment

Thermal inertia in the regolith causes the cyclic oscillation (thermal wave)
to get smaller with depth

Regolith is a poor heat conductor so this also reduces amplitude of the
thermal wave with depth

Essentially no temperature swing below 80 cm

Low thermal inertia of the dry regolith allows it to heat up very quickly
when the sunis on it again

Wide range of temperatures in shadowed or sunlit topography
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Global H-parameter Map

(no latitude correction)
Lower thermal inertia in the

regolith at high latitudes

Higher thermal inertia in the
regolith at mid latitudes

Credit: Paul Hayne



One Possible Model:

- Optical layer: extremely
Low-latitudes PSRs Hioh borty (570%)
/ and/or frost
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Credit: Paul Hayne



Evidence that polar soil may be
different

_CROSS ejecta blanket angle

| CROSS delayed flash

RO Diviner “H” values (IR)

RO LAMP (FUV)

_LRO Mini-RF

Lab experiments with thermal cycling




Why is Lunar Regolith Densified?

1. Impact Tamping?
2. Vibration?

— Shallow Moonquakes
3. Thermal Cycling?

4. Combination?
— What is the relative contribution of each?

— How does this relate to the complex history of
overturning and depositing layers?
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Figure 8 Overlay of epithermal* counting rates in each 2° by 2° equal area pixel poleward of
+70° with surface relief maps of the lunar poles (28).
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LCROSS Impact

4 to 6 MT material
ejected

Volatiles comprised
much as 20% of mass

Not just water
— CH,, NH,, H, CO,, CO

— Metals including sodium,
silver and mercury

Physical state of the ice
is unknown

Source: NASA
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LCROSS Impact

LCROSS NIR spectrometer suggests cold, crystalline ice:
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Strength of Icy Regolith

Water Content Behaves Like

0-0.3%wt Weak coal

0.6-1.5%wt Weak shales & mudstones
7.9-8.8%wt Moderate-strength

limestones & sandstones

10-11.9%wt Strong limestone, sandstone
& high strength concrete

Source (chart on left): Gertsch, Leslie, Jamal Rostami, and Robert Gustafson.

"Review of Lunar Regolith Properties for Design of Low Power Lunar

Excavators." Sixth International Conference on Case Histories in Geotechnical
Engineering (2008). 34



UCS (MPa)

Strength of Icy Lunar Simulant
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Source (chart on left): Gertsch, Leslie, Jamal Rostami, and Robert Gustafson.
"Review of Lunar Regolith Properties for Design of Low Power Lunar
Excavators." Sixth International Conference on Case Histories in Geotechnical
Engineering (2008).



Mining lcy Regolith

Figure 2. RASSOR's bucket drum is shown excavating ic}* regolith formed by crvo-freezing BP-
simulant mixed with water using a 10:1 ratio of regolith to water.

1

Source: Mantovani, James G., Adam Swanger, lvan |. Townsend lll, Laurent
Sibille, and Gregory Galloway. "Characterizing the Physical and Thermal

Properties of Planetary Regolith at Low Temperatures." In Earth and Space
2014, pp. 43-51. 2014.
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Summary

Lunar soil is poorly sorted silty-sand with rough particle
shapes

— High friction and cohesion
— Flows poorly
Generally is more compacted with depth
— Therefore more frictional and cohesive with depth
— Hard to penetrate
There is evidence it is looser toward the poles
— We do not understand these data
— Be prepared to drive & dig in looser soil
If it is sufficiently icy, it may behave like rock
— Different sensors say maybe 1.5 - 20%wt ice in PSRs (??7?)

— May have strength anywhere between weak shale &
granite
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