A ground penetrating radar to sound the shallow lunar subsurface and search for water ice

Scientific Objectives for a GPR on a Lunar Rover

- Understand the evolution of the moon through an investigation of the stratigraphic lunar subsurface features
- Access the three dimensional Composition of The Lunar Crust
- Investigate the potential presence of Water Ice (poles) in the shallow sub-surface
- Complement the data acquired from orbit and from the Chang'E-3 GPR

Investigation of the potential presence of Water Ice (pole)

Permanently shadowed areas exist at the bottom of deep craters near the pole

- A high Circular Polarization Ratio (CPR) value is generally due to multiple reflections or volume scattering.
- It is considered to be an indication of ice's presence

Mini-SAR Chandrayaan 12 cm Spudis et al.,2010

Goldstone Solar System Radar 3-5 cm J.L. Margot et al.,1999

Complement the observations made from orbit and from surface (LPR/chang'e-3)

Example: Chang'e-3 LPR data at 500 MHz

Ref: W. Fa et al. Shallow subsurface structure of the Moon at the Chang'e-3 landing site as revealed by the Lunar Penetrating Radar LPSC 2015

WISDOM A GPR designed for shallow sounding from a rover

EXOMARS
Phase B1 Design

WISDOM Scientific objectives in the ExoMars context

Investigate and remotely characterize the subsurface

- Understand the 3-dimensional geologic context and history of the landing site
- understand the local subsurface distribution and state of H₂O (such as segregated ground ice, ice-wedges associated with polygonal ground).

Identify the most promising locations for drilling that combine targets of high scientific interest with minimum risk to the drill

The Instrument main characteristics

A Ground Penetrating Radar (GPR)

- Broad band UHF GPR: from 0.3 to 3 GHz
- Step frequency
- Polarimetric measurements (XX XY YX YY)

Anticipated performances

- Vertical resolution of a few centimeters
- Penetration depth (< 10 m)

Operating modes

 Rover in motion: Measurements along the Rover path to get 2D profiles or 3D mapping

WISDOM Resources 10% maturity margin	
Power Allocation (Watt)	
Full Power	~ 12
Low power	~ 6
Energy per sol (Watt.hr)	
Depending on the operations	
Volume (cm \times cm \times cm)	
Antenna System (AS)	42 × 20 × 18
Electronics Unit (EU)	9 × 15.5 × 5.5
Mass Allocation (g)	
Antenna System (AS)	450
Electronics Unit (EU)	850
Cables	300
Total	1600

The Instrument

The WISDOM Electronics are included in a single stand-alone mechanical box. This box is made of 3 stacked modules for EMI

Two identical dual-feed, fully polarized Vivaldi horns for transmission and reception

Expected performance

Example of the achieved range resolution

Radargram of an icy environment

Permittivity ~3.2 Extremely low losses

Ice

pyroclastic deposits

Conclusion

- A GPR like WISDOM gives access to the structures (> 10 cm) at depth (<5m in lithic environments)
- It can detect, localize and characterize homogeneous units
 - -> segregated ice
- It can estimate permittivity values
 - -> If the rocks electrical properties are well constrained, it might be possible to detect the presence of ice (vs vacuum) in the regolith.
- The synergy with a neutron detector improves significantly the GPR interpretation in terms of ice content.